

InfiniteGraph:
Extending Business, Social and Government

Intelligence with Graph Analytics

A Technical Whitepaper

Author:
Rick F. van der Lans

Independent Business Intelligence Analyst
R20/Consultancy

September 25, 2010

Sponsored by

Copyright © 2010 R20/Consultancy. All rights reserved. InfiniteGraph and Objectivity/DB are
registered trademarks or trademarks of Objectivity, Inc. Trademarks of other companies
referenced in this document are the sole property of their respective owners.

Copyright © 2010 R20/Consultancy, All Rights Reserved.

Table of Contents

1. Summary … 1

2. A New Form of Analytics: Graph Analytics … 2

3. Graph Analytics in a Nutshell … 5

4. Different Forms of Graph Analytics … 7

5. Application Areas for Graph Analytics … 9

6. Storing and Retrieving Graphs … 11

7. Using Files for Storing and Retrieving Graphs … 11

8. Using SQL Database Servers for Storing and Retrieving Graphs … 13

9. Using NoSQL Database Servers for Storing and Retrieving Graphs … 17

10. What is a Graph Database Server? … 21

11. InfiniteGraph … 24

12. The Position of InfiniteGraph in Business Intelligence Architectures … 28

13. Technical Advantages of InfiniteGraph … 30

14. Business Advantages of InfiniteGraph … 31

15. Case Study – A Government Agency … 32

About the Author Rick F. van der Lans … 33

About Objectivity, Inc … 33

Copyright © 2010 R20/Consultancy, All Rights Reserved.

InfiniteGraph: Extending Business, Social and Government Intelligence with Graph Analytics 1

Copyright © 2010 R20/Consultancy, All Rights Reserved.

1 Summary

Graph analytics can be applied usefully in a wide range of applications areas, including
government, finance, distribution and shipment, commerce, telecommunications, and internet
services.

For the business intelligence, social, and government markets a wide range of tools are available
with which users can analyze their data stored in data warehouses and production databases.
These tools range from straightforward reporting tools via interactive online analytical
processing tools to advanced statistical tools. All these tools help users in some way to improve
their operations and business decisions. They help by presenting data in a certain graphical way
by summarizing data, by grouping data, or by predicting the future.

But there are things these tools can’t do and that is analyze data when it’s structured as a graph
or network and they can’t analyze data by traversing graphs. For example, a manager of a social
networking website wants to know who the central members of a social network are. Imagine the
term central is defined as those members that have the shortest paths to most of the other
members. This problem can’t be solved by simply summarizing data, nor does it have anything
to do with predicting. Instead, the tool must be able to traverse the graph, it has to ‘walk’ from
node to node. And this is not a feature found in most analytical tools available today.

Analyzing network-structures is the domain of graph analytics. This is a special form of analytics
that has been around for a very long time. In fact, the history of graph analytics and the
underlying graph theory goes back to the early 18th century. Today, powerful tools and database
servers are available that support graph analytics. What’s special about them is that they allow
fast online graph traversal even if the graphs consist of millions of nodes.

The challenge of graph analytics on massive graphs is how to store and access the data in such a
way that graph traversal is fast. Classic SQL database servers don’t offer the right features for
graph analytics. Especially, the way in which data is organized as tables and columns, don’t make
them ideal for graph traversal.

Recently, a new generation of database servers has been introduced, referred to with the
intriguing name NoSQL database servers. This is not a homogeneous group of products, but a
wide range of database servers. The only thing they have in common is that none of them
regard SQL as their primary database access language, hence the name. Several don’t support
SQL at all, a few of them support a form of SQL, and the rest offers SQL as a second language.
Some of these NoSQL database servers can be classified as graph database servers: products
designed and developed specifically to support graph analytics.

InfiniteGraph is a graph database server. It supports many different forms of graph analytics,
including single path analysis, shortest path analysis, optimal path analysis, path existence
analysis, and vertex centrality analysis. It’s developed on top of an object-oriented database
server called Objectivity/DB. The combination is a robust, proven, and scalable solution

InfiniteGraph: Extending Business, Social and Government Intelligence with Graph Analytics 2

Copyright © 2010 R20/Consultancy, All Rights Reserved.

designed to store and analyze massive graphs. It even supports special data partitioning
techniques to fully exploit multi-processor hardware technology.

For developers, InfiniteGraph offers a wide range of advantages, including increased
productivity, fast processing of massive graphs, efficient data access, optimization techniques for
graph traversal. Additionally, it’s a database server with low maintenance.

For business users, the advantages of InfiniteGraph are that it allows online analysis of large-
scale graphs, quick development of new analytical applications, interactive analysis of graphs,
and live analysis of operational data. InfiniteGraph extends the analytical capabilities of the
analytical tools used by organizations today.

2 A New Form of Analytics: Graph Analytics

Users of business intelligence architectures can have very different reporting and analytical
needs. Therefore, a wide range of tools is available. Here are a few examples of different types of
reporting and analytical tools:

• Some users are satisfied with a pre-defined, fixed set of rather straightforward reports in
which data is joined, grouped, and summarized. Those reports allow them to view what
has happened in the business. Classic reporting tools are the preferred tools for these
users.

• Large groups of users prefer to do all their reporting and analytics with spreadsheets,

such as Microsoft’s Excel.

• Some users need OnLine Analytical Processing tools (OLAP), tools that offer a highly
dynamic environment where users can easily perform drill downs and rollups, and where
they can view the data in every single way; see Figure 1.

• Another group of users needs to create complex forecasting models, for example, to

predict the effect on the sales of houses if the interest rates increase with 0,25%. These
are the statistical tools for predictions and forecasts.

• And some users prefer to see summarized data being displayed as key performance

indicators (KPI’s) in a dashboard, where data is refreshed periodically, and where the
tool should inform them when a specific situation arises; see Figure 2.

InfiniteGraph: Extending Business, Social and Government Intelligence with Graph Analytics 3

Copyright © 2010 R20/Consultancy, All Rights Reserved.

Figure 1 An example of a report (Spotfire Screenshot
Courtesy of Tibco Software Inc.)

Figure 2 An example of a dashboard (Courtesy of Corda
Technologies, Inc.)

Graph Analytics – So, for most forms of reporting and analytics tools are available. However,
there are forms of analytics that are not supported by these tools. One of these forms is called
graph analytics. Informally, graph analytics means the study and analysis of data that is formed
as a network (graph) of objects and relationships. This form of analytics is characterized not so
much by summarizing, grouping, and filtering data, but by traversing or navigating the
network. Figure 3 presents a graph of five different people and their relationships. A simple
example of a question that can be answered using graph analytics would be: “How many ‘hops’
are John and Pat removed from each other?” or “Is there a family relationship between John
and Pat?”

John

Rick

Diane

Alyssa

Pat

wife uncle

brother
in law

daughter

brother

colleague

friend

John

Rick

Diane

Alyssa

Pat

wife uncle

brother
in law

daughter

brother

colleague

friend

Figure 3 An example of a simple graph

InfiniteGraph: Extending Business, Social and Government Intelligence with Graph Analytics 4

Copyright © 2010 R20/Consultancy, All Rights Reserved.

Examples of Graphs – Examples of graph-based data structures can be found in almost any
industry. They can be found in the world of social networking sites, bio-engineering, drug
development, fraud detection, traffic optimization, and many more. A few examples where data
can be organized as graphs and where graph analytics might be useful, are:

• All the flights from and to airports can be organized as a graph. In this case, the airports
are the objects and the flights the relationships between the objects. Such a graph can be
created for all the flights of one airline, or for a set of airlines (such as Expedia’s website).

• The network of all the members of a social networking site, such as LinkedIn and

Facebook, plus all their relationships can be arranged as a graph.

• The accounts of a bank with all the inter-account money transfers form a graph.

• In the context of a parcel service, all the parcel shipments between addresses world-wide
can be organized as a graph.

• A visitor’s journey on an organization’s website can also be seen as a graph, where

webpages form the objects and the visitor’s clicks the relationships.

• In the context of a telephone company, all the call detail records between callers can be
viewed as relationships between objects, and together they form an incredibly large
graph.

Why Graph Analytics? – What’s so special about graph analytics? In case of the example with
flights between airports, traditional reporting and analytical tools allow us to analyze how many
flights depart from a specific airport per day. And if the load factor of flights (percentage of seats
sold) is known, we can determine what the average load factor is for flights from Boston to San
Francisco. Additionally, if we have the right predictive analytical tools we can even predict what
the load factor might be for the coming months. We can also use dashboards that are constantly
refreshed and that show the average load factor for flights. But most of the known tools (except
for some of the statistical tools) are not able to determine what the two cheapest or four shortest
flights with a maximum of two stops in between are from New York to Los Angeles. Nor will
they be able to determine for a member of a social networking site, such as LinkedIn and
Facebook, which other members someone is likely to know but are not connected to yet, so that
they can be encouraged to connect. It will also be hard, in the context of a telephone company,
to track down customers that are most likely to influence other customers in their decision to
keep or change service providers.

What’s special about these latter examples is that they all analyze data that is formed as a graph
and that graph is traversed (or navigated) by walking from one node to another via their
relationships. Sometimes those traversals are guided by the users and sometimes the tools will do
the navigation. In short, most existing analytical tools don’t provide the mechanisms to navigate
and analyze data that is graph-structured. Therefore, a need exists for tools and database servers
that do support this form of analytics. These tools should allow for interactive graph traversal,

InfiniteGraph: Extending Business, Social and Government Intelligence with Graph Analytics 5

Copyright © 2010 R20/Consultancy, All Rights Reserved.

and should be able to traverse massive graphs as found in social network and financial
environments.

3 Graph Analytics and Graph Theory in a Nutshell

In this section, a short introduction is given to the foundation and the background of graph
theory and graph analytics. In addition, the terminology used in this whitepaper is explained.
We begin by explaining the term graph theory.

What is Graph Theory? – Graph theory is the study of graphs in general. It’s a set of definitions
for concepts such as vertex (node), edge, loop, hyperedge, and anti-triangle. In graph theory a
graph is a collection of vertices (or nodes) and a collection of edges that connects pairs of
vertices. For example, in Figure 3 the circles represent the vertices and the arrows the edges.
Vertices and edges can have properties. For example, a vertex in a social network is a member,
and its properties might be name, date of birth, and current employer. In that same example, an
edge is a relationship between two members. A property of an edge might be the type of
relationship between members, such as child-of, friend-of, or employee-of.

A path in a graph is a set of vertices connected by edges. It has a starting vertex and an ending
vertex (not necessarily different). For example, in a graph that contains family tree data, a path
could be formed by a person (John) plus his father (Peter), his father’s father (Dyke), and finally
his father’s father’s father (Bob). This path could be presented more formally as follows: John
Peter Dyke Bob.

The term hop is used when an algorithm traverses a graph and a jump is made from one vertex
to another vertex over a specific edge. For example, in the previous example, if an algorithm
traverses from John to Bob, three hops are made.

AMS

LHR

ORD LAX

JFK PHX

UA230 UA111

UA463
UA163

UA547
UA328

UA686UA538

AMS

LHR

ORD LAX

JFK PHX

UA230 UA111

UA463
UA163

UA547
UA328

UA686UA538

Figure 4 An example of a directed graph

A distinction is usually made between undirected and directed graphs. With the former there is
no distinction between the two vertices of an edge. Whereas with the latter there is a distinction:
the edge ‘points’ from one vertex to another. An example of an undirected graph is formed by
all the relationships between members of a social networking site. Each member is a vertex and
their relationships are the edges. It’s an undirected graph because a relationship between John
and Mary is the same as a relationship between Mary and John. An example of a directed graph
is the route that a user followed to navigate from one wegpage to another. The webpages are the

InfiniteGraph: Extending Business, Social and Government Intelligence with Graph Analytics 6

Copyright © 2010 R20/Consultancy, All Rights Reserved.

vertices and the edges are the jumps from one page to another. Another example is formed by
all the flights from an airline; see Figure 4. Flights depart from one airport and arrive at another
airport. The flights are the edges and the airports the vertices. This is definitely a directed
graph, because for a flight a clear distinction exists between the departing and the arrival
airport.

What is Graph Analytics? – Graph analytics is the study and analysis of data that is formed as a
graph consisting of vertices and edges. An example of graph analytics is to find out in how many
ways two members of a social network are linked directly and indirectly. Another example is to
determine what the critical path of a project is and to determine how long a project takes
minimally. Graph analytics is analogous to web analytics: the analysis of webpage traffic. In this
way, it’s also comparable to predictive analytics: the analysis of current and historical facts to
make predictions about future events.

One of the oldest examples of graph analytics is called seven bridges of Königsberg, which dates
back to the first half of the 18th century. This city was set on both sides of the Pregel River, and
included two large islands which were connected to each other and the mainland by seven
bridges; see Figure 5. The challenge was to find a walk through the city that would cross each
bridge once and only once. The islands could not be reached by any route other than the
bridges, and every bridge must have been completely crossed every time. Note: It has taken a
long time, but in the end it was obvious that there was no solution.

Figure 5 The seven bridges of Königsberg (Source Wikipedia)

Nowadays, many examples exist where graph analytics can help organizations to find a solution
to their business problems. For example, it can help to find the shortest route for a delivery
truck to deliver goods at various stores. Another classic example where it can be applied is when
a telephone company wants to analyze call detail records. Besides other details, such a record
contains the number of the calling party and the number of the called party. Those parties and
all the calls make up a very large graph. Using graph analytics, we might find the answer to the
question: “How close together are certain parties?” In other words, determine how many hops
are needed to get from one party to another. Another question might be: “How central are
certain parties?” The goal of this question might be to find the central parties in the graph.

A more contemporary example of graph analytics relates to social networks. In such an
environment, they may have questions such as “Do two members of a social network have more

InfiniteGraph: Extending Business, Social and Government Intelligence with Graph Analytics 7

Copyright © 2010 R20/Consultancy, All Rights Reserved.

than five friends in common”, “Does a path exists that connects members M1 and M2?”, and “Of
all the members belonging to a social network, can we identify a central member?”

Many other examples can be found. Figure 6 contains a visualization of a graph that represents,
among other things, the amount of passes between players during the soccer match between
Germany and Sweden at the Worldcup in 2006. Using graph analytics teams can use the results
to see how players will behave based on the amount of passes between them.

Figure 6 A graph representing the
passes between players during a soccer
match

Most of the problems that can be tackled easily with graph analytics, are quite hard to solve with
classic reporting and analysis tools. Most of these tools are good at summarizing data, grouping
data, joining data, doing calculations, determining averages, and so on, but they don’t really
help solve typical graph problems. The main reason is that typical graph problems are solved by
graph traversal; jumping from one vertex to another via edges. This type of problem is not
solved by scanning all the available objects, which is what most other tools are good at.

Note: For more information on graph theory and graph analytics we refer to the works of
Chartrand1, Berge2, Trudeau3, and Tutte4.

4 Different Forms of Graph Analytics

Different forms of graph analytics exist. For example, a graph can be traversed to find an
indirect link between two vertices, or the importance of a vertex in a graph can be determined.
Here are some popular forms:

1 Chartrand, G., ‘Introductory Graph Theory’, Dover Publications, 1984.
2 Berge, C., ‘The Theory of Graphs and its Applications’, John Wiley & Sons, 1964.
3 Trudeau, R.J., ‘Introduction to Graph Theory’, Dover Publications, second edition, 1994.
4 Tutte, W.T., ‘Graph Theory’, Cambridge University Press, 2001.

InfiniteGraph: Extending Business, Social and Government Intelligence with Graph Analytics 8

Copyright © 2010 R20/Consultancy, All Rights Reserved.

Single Path Analysis – With single path analysis the goal is to find a path through the graph
starting with a specific vertex. The path is determined in steps. First, all the edges plus
corresponding vertices that can be reached by one hop are evaluated. From the found vertices
one is selected, and the first hop is made. Next, the edges and vertices of this found vertex is
determined, and this process continues. The result of such an exercise is a path consisting of a
number of vertices and edges.

Shortest Path Analysis – When this form of analysis is used, the shortest path is found between
two vertices. Shortest means the smallest number of hops. Evidently, the shortest path between
two vertices consists of one hop.

Optimal Path Analysis – With this form of analysis the ‘best’ path is found between two vertices.
The best path could be the fastest, the safest, or the cheapest path. The best is based on the
properties of the vertices and the edges.

Path Existence Analysis – This form of analysis determines whether paths exist between two
vertices. In other words, if we start with two vertices and their edges are followed, will the paths
meet somewhere? An example of path existence analysis is the challenge called the Six Degrees
of Kevin Bacon. If a graph is created in which all the movie stars are the vertices and the edges
represent the movies in which they played together, then anyone can be linked to Kevin Bacon
within six hops.

Vertex Centrality Analysis – Various measures of the centrality of a vertex within a graph have
been defined in graph theory. The higher such a measure is, the more ‘important’ the vertex is
in the graph. The following measures have been defined:

• Degree centrality: This measure indicates how many edges a vertex has. The more edges,
the higher the degree centrality. A vertex with high degree centrality is generally an
active vertex or a hub.

• Closeness centrality: This measure is the inverse of the sum of all shortest paths to other

vertices. In other words, it indicates for a vertex the smallest number of hops to make to
reach all other vertices individually. A vertex with high closeness centrality has short
paths to many vertices.

• Betweenness centrality: This measure indicates the number of shortest paths a vertex is

on. It shows a vertex’s position within a graph in terms of its ability to make connections
to other groups in the graph. Figure 7 shows the degree of betweenness centrality for all
the vertices in a graph.

• Eigenvector centrality: This measure indicates the importance of a vertex in a graph.

Scores are assigned to vertices based on the principle that connections to high-scoring
vertices contribute more to the score than equal connections to low-scoring vertices.

InfiniteGraph: Extending Business, Social and Government Intelligence with Graph Analytics 9

Copyright © 2010 R20/Consultancy, All Rights Reserved.

Figure 7 The colors of the vertices in this graph indicate the measure
of betweenness centrality; red is low, blue is high (Source Wikipedia)

A distinction can be made between guided versus non-guided analysis. Guided means that
during analysis, human analysts make decisions on how to proceed. With non-guided analytics,
the tools do all the work, and present a result at the end. For example, single path analysis is
probably guided. Every time when a set of vertices is reached by a hop, the analyst determines
from which vertex to proceed. Whereas vertex centrality analysis is normally done in a non-
guided way. The tool starts its algorithm and presents the results at the end.

5 Application Areas for Graph Analytics

This section describes a few application areas of where graph analytics can be used and where it
enriches the existing set of tools we use in business intelligence architectures.

Government – In a government environment a graph can be created linking all private persons,
organizations, and their relationships (such as brother, mother, spouse, owner, share holder,
member of board of directors, and employee). Vertex centrality analysis can be used to find
those vertices that form central roles in the graph: “Which persons are linked to many
organizations?” Also, graph analytics could help to find ‘hidden’ relationships between
organizations. For example, path existence analysis could show that some organizations are all
linked with two or three hops to a specific person. It could mean nothing, but it could also imply
some type of fraud.

Finance – Money transfers between bank accounts could form a very useful graph for all kinds
of forms of graph analytics. For example, single path analysis can be used to ‘follow’ money
transfers. Path existence analysis can be applied to determine the different relationships between
two account holders. It could be that money flows between two bank accounts via four
intermediate bank accounts, but also via two totally different ones. With path existence analysis
all those paths are discovered and can be evaluated by specialists. Another example is when the
money transfer data is extended with the addresses of the account holders. This might make it
possible to see that on a specific address quite a number of accounts is based. It’s not that this
isn’t allowed, but it’s an unusual situation.

InfiniteGraph: Extending Business, Social and Government Intelligence with Graph Analytics 10

Copyright © 2010 R20/Consultancy, All Rights Reserved.

Distribution and Shipment – Optimal route analysis is an obvious form of graph analytics to be
used in distribution and shipment environments. What is the shortest route to deliver goods to
various addresses? What is the cheapest flight for a passenger? There are many examples
imaginable for these area.

Retail – A graph can be created where products sold form the vertices and the customers buying
the products are the edges. By using vertex centrality analysis the dominant products can be
identified. Path analysis can also be used to determine the ideal locations for products inside
shops.

Telephone Companies – All the call detail records form a huge graph. Applying vertex
centrality analysis can give insight into the dominant parties.

Parcel Services – The addresses where parcels must be picked up and delivered can form the
vertices of a graph and the parcel deliveries the edges. Graph analytics can give insight in the
central address. Especially if this graph is extended with geographical information (where are
the addresses located), it can give information about the routes that should be taken. It might
also show whether there are popular routes. Additionally, it might show whether warehouses for
temporary storage must be moved or whether distribution centers must be relocated.

Websites – Every organization that logs all the traffic on their website can create a graph that
shows how individual visitors travel through the website. Different forms of path analysis can be
used to simulate this traffic and determine whether visitors are using the correct and the most
ideal path. In addition, vertex centrality analysis can be used to determine the central webpages.
Graph analytics can also be used for studying the usability of the website. One could answer such
questions as: “How many steps does it take to be able to download our product?” or “How can
we get the user to an answer in the least amount of steps possible?”

In fact, whether graph analytics can be used, depends greatly on whether analysts can turn their
data into a graph. This requires business knowledge and sometimes creativity. Using graph
analytics in business intelligence architectures to improve business decisions is a relatively new
area, but has an enormous potential. It definitely extends the reporting and analytical
capabilities already available.

Graph Analytics and Operational Data – Most of the problems for which graph analytics is
suitable, deal with operational management. Normally, strategic and tactical management do not
have analytical challenges that can be handled with graph analytics. It’s the management layer is
closest to the business processes that will use graph analytics. Certain business processes can be
optimized or improved using graph analytics. However, this also implies that, in most cases,
100% up-to-date data is needed to perform the analysis. And this could mean that graph
analytics is performed on large datasets and, because the analysis is done online, the tools should
be fast. Note: In most organizations graph analytics is regarded as a form of operational
analytics.

InfiniteGraph: Extending Business, Social and Government Intelligence with Graph Analytics 11

Copyright © 2010 R20/Consultancy, All Rights Reserved.

6 Storing and Retrieving Graphs

To be able to analyze graphs, at least two components are needed. First of all, a tool that can be
used by users to view the analysis results and to guide the analytical process; see for example
Figure 8. Secondly, a solution for storing and accessing the graph data is needed. Today, there
are three solutions available for storing graphs:

• in files
• in SQL database servers
• in NoSQL database servers

The first solution is discussed in the next section, the second one in Section 8, and the third in
Section 9.

Figure 8 An example of a tool for
viewing the results of graph
analytics

7 Using Files for Storing and Retrieving Graphs

Graph data can be stored simply in files. Many tools on the market for viewing and analyzing
graphs work this way. They don’t operate on database servers, but instead store the graph data

InfiniteGraph: Extending Business, Social and Government Intelligence with Graph Analytics 12

Copyright © 2010 R20/Consultancy, All Rights Reserved.

in a simple file with a GML, GDF, GEXF, GraphML, or DOT format. All the relevant data is
loaded in memory before the analysis.

In most cases, these tools run on client machines. The advantage is that response times are very
fast. However, a disadvantage is that only a limited amount of data can be loaded and processed.
The resources on such a machine are limited, so only graphs of limited size can be analyzed.
Some of them are very generic and can deal with any type of data, and some are designed for a
specific application area.

Figure 9 Example of Sentinel Visualizer

For example, Cytoscape, used in Figure 8, is a tool for visualizing molecular interaction networks
and integrating these interactions with gene expression profiles. Figure 9 contains another
example. It shows a result created with Sentinel Visualizer (by FMS Advanced Systems Group);
this tool is designed for social network analysis and supports functionality to calculate the degree

InfiniteGraph: Extending Business, Social and Government Intelligence with Graph Analytics 13

Copyright © 2010 R20/Consultancy, All Rights Reserved.

centrality, betweenness centrality, and the closeness of members. Figure 10 contains a great
example of linking social network data to geographical data.

If large graphs must be manipulated, graph data should be stored in database servers, which is
the topic of the next two sections.

Figure 10 Graph created by Manuel Lima of
VisualComplexity.com

8 Using SQL Database Servers for Storing and Retrieving Graphs

Querying Graphs with SQL – Graphs can be stored in SQL databases. Only a few tables are
needed to store all the data on edges and vertices. Because SQL database servers have proven
they can manage databases Terabytes large, they won’t have a problem with storing massive
graphs.

When data is stored in tables, SQL can be used to query the data. Simple questions such as “How
many edges are connected to a specific vertex” are easy to handle and to answer. However,
many of the queries that are typical for graph analytics are recursive by nature and that might be
a problem with SQL database servers. Let’s illustrate this with an example.

Imagine we have data related to flights of one airline leaving from and arriving at airports. In
this example the airports form the vertices and the flights form the edges of the graph. This data
is stored in the following FLIGHTS table:

InfiniteGraph: Extending Business, Social and Government Intelligence with Graph Analytics 14

Copyright © 2010 R20/Consultancy, All Rights Reserved.

FNO DAIR AAIR DEPARTURE_TIME ARRIVAL_TIME PRICE
----- ---- ---- ----------------- ----------------- --------
0 AMS LHR 2007-03-01-11.30 2007-03-01-12.30 160.17
1 LHR ORD 2007-03-01-13.30 2007-03-01-19.30 964.29
2 ORD LAX 2007-03-01-20.30 2007-03-02-01.30 583.11
3 LAX SYD 2007-03-02-02.30 2007-03-02-12.30 1663.04
4 AMS TYO 2007-03-01-11.00 2007-03-01-22.00 1595.86
5 TYO SYD 2007-03-02-03.00 2007-03-02-14.00 1487.33
6 AMS LAX 2007-03-01-18.00 2007-03-02-07.00 1374.15
7 AMS JFK 2007-03-01-10.00 2007-03-01-16.00 964.61
8 JFK PHX 2007-03-01-19.00 2007-03-02-01.00 1069.99
9 AMS LGA 2007-03-01-10.00 2007-03-01-16.00 1081.56
10 LGA PHX 2007-03-01-20.00 2007-03-02-02.00 911.92
11 AMS EWR 2007-03-01-10.00 2007-03-01-17.00 911.36
12 EWR PHX 2007-03-01-19.00 2007-03-02-00.00 937.98
13 AMS CAI 2007-03-01-09.00 2007-03-01-16.00 1208.67
14 CAI TYO 2007-03-01-19.00 2007-03-02-00.00 977.95
15 AMS JFK 2007-03-01-15.00 2007-03-01-21.00 1155.43
16 AMS LGA 2007-03-01-12.00 2007-03-01-18.00 923.61
17 AMS LHR 2007-03-01-15.00 2007-03-01-16.00 114.23

Next, we have the following query to solve: “Get the cheapest flights from Amsterdam to
Phoenix leaving on March 1, 2007, with a maximum of two stops, and each stop should be less
than 4 hours”. Using SQL, the query would look as follows:

WITH FLIGHTPLAN(FLIGHTNO, PLAN_AIRPORTS, PLAN_FLIGHTS,
 START_AIRPORT, END_AIRPORT, START_TIME, END_TIME,
 DEPARTURE_AIRPORT, ARRIVAL_AIRPORT,
 DEPARTURE_TIME, ARRIVAL_TIME, PRICE, STOPS) AS
 (SELECT FLIGHTNO, CAST(DEPARTURE_AIRPORT || '->' ||
 ARRIVAL_AIRPORT AS VARCHAR(100)),
 CAST(RTRIM(CHAR(FLIGHTNO)) AS VARCHAR(100)),
 DEPARTURE_AIRPORT, ARRIVAL_AIRPORT,
 DEPARTURE_TIME, ARRIVAL_TIME,
 DEPARTURE_AIRPORT, ARRIVAL_AIRPORT,
 DEPARTURE_TIME, ARRIVAL_TIME, PRICE, 0
 FROM FLIGHTS
 WHERE DEPARTURE_AIRPORT='AMS'
 AND CAST(DEPARTURE_TIME AS DATE) = '2007-03-01'
 UNION ALL
 SELECT P.FLIGHTNO, P.PLAN_AIRPORTS || '->' || F.ARRIVAL_AIRPORT,
 P.PLAN_FLIGHTS || '->' || RTRIM(CHAR(F.FLIGHTNO)),
 P.START_AIRPORT, F.ARRIVAL_AIRPORT,
 P.START_TIME, F.ARRIVAL_TIME,
 P.DEPARTURE_AIRPORT, P.ARRIVAL_AIRPORT,
 P.DEPARTURE_TIME, P.ARRIVAL_TIME,
 P.PRICE + F.PRICE, STOPS+1
 FROM FLIGHTPLAN AS P, FLIGHTS AS F
 WHERE P.ARRIVAL_AIRPORT = F.DEPARTURE_AIRPORT
 AND P.ARRIVAL_TIME < F.DEPARTURE_TIME
 AND F.DEPARTURE_AIRPORT <> 'PHX'
 AND LOCATE(F.ARRIVAL_AIRPORT, P.PLAN_AIRPORTS) = 0
 AND STOPS < 1
 AND P.ARRIVAL_TIME + 4 HOURS > F.DEPARTURE_TIME)
SELECT PLAN_AIRPORTS, PLAN_FLIGHTS, START_AIRPORT, END_AIRPORT,
 START_TIME, END_TIME, PRICE
FROM FLIGHTPLAN
WHERE END_AIRPORT = 'PHX'
ORDER BY PRICE ASC
FETCH FIRST 1 ROW ONLY

Although this query returns the right result, it’s not an easy query to write. In addition, it will be
hard for the database server to process this query quickly. So especially when the graphs become

InfiniteGraph: Extending Business, Social and Government Intelligence with Graph Analytics 15

Copyright © 2010 R20/Consultancy, All Rights Reserved.

large, these queries might take a long time and probably consume a lot of resources. It’s also a
query that’s hard to optimize and to parallelize.

Note: In the previous paragraphs the assumption was made that SQL database servers support
recursive queries, but that’s not the case. In fact, only a few do. For the other database servers,
code must be added to the applications to traverse the graphs. In other words, the database
server won’t be doing the analysis, but the applications.

Storing Graphs in SQL Databases – Another problem is related to how data is stored in SQL
database servers. In most of them, all data is stored as records belonging to tables. This means
that the vertices making up a graph are also stored as records. So far, so good. Records can be
retrieved by scanning tables or by using indices.

If tables contain a large set of rows, and all these rows must be scanned frequently, tables can be
partitioned. These partitions are then distributed across multiple processors. Each processor
controls one or more partitions. The advantage is that partitions can be scanned in parallel
(instead of scanning all the rows serially) by the processors. This definitely improves the overall
query performance.

In order to distribute query processing across multiple processors, the architecture of a database
server is distributed. Figure 11 shows the typical architecture for such a parallel database server.
The database server has processing modules, frequently called nodes. One of those nodes is
called the Master and the other nodes are Workers. Each Worker manages a number of tables or
table partitions. Usually, the Master knows where all the data is stored. The Master and the
Workers can run on different processors in one single machine, or they can be distributed across
a network or cluster of machines.

Master

Worker Worker Worker

SQL Query

Database
ServerMaster

WorkerWorker WorkerWorker WorkerWorker

SQL Query

Database
Server

Figure 11 Typical architecture for parallel
database servers

This architecture is very useful if it makes sense to scan each partition completely. However, this
is not the case when graphs are traversed. For example, take the graph in Figure 12, and let’s
say we want to find out whether there is a link between members M1 and M9. If we would store
all the relationships between members in a table, and if we would partition that table, the

InfiniteGraph: Extending Business, Social and Government Intelligence with Graph Analytics 16

Copyright © 2010 R20/Consultancy, All Rights Reserved.

members that make up the graph would be spread out over all the partitions. For every hop to
the next set of vertices, the table (read the partitions) must probably be scanned. So we might
end up with scanning the partitions four times. In addition, we’re probably not accessing large
set of rows, but we are scanning most of them. In fact, traversing graphs in this situation could
lead to bad query performance, because of the somewhat brute-force scanning solution.

M1 M2 M4 M6

M3 M5

M9

M7

M8

M1 M2 M4 M6

M3 M5

M9

M7

M8

Figure 12 A graph containing
members of a social network

The last few years, a new generation of SQL database servers has been introduced. These are
database servers that have been designed and optimized for reporting and analytics. It includes
data warehouse appliances, columnar databases, and analytical database servers. Their internal
architectures make them very efficient for running straightforward reporting and analytical
queries up to running complex statistical forecasting models. However, the queries generated by
graph analytics are not typical queries. They have a very different pattern. The consequence is
that even this new generation has a hard time in improving the performance of graph-oriented
queries.

Maybe the products will still have a decent performance if the graphs contain a limited number
of vertices and edges. But nowadays graphs might consist of millions, sometimes even billions of
vertices, such as the massive graph created by all the LinkedIn members. In May 2010,
LinkedIn had 70 million members, and every second a new member is added.

Traversing Graphs in SQL Databases – Doing graph analytics always implies traversing the
graphs. Let’s first explain what graph traversal could mean before we indicate whether a SQL
database server is ideal for this.

In most cases, if a graph has to be traversed there is a starting point: the vertex where the
traversal starts. It might be a member of a social network, or the departure airport of a multi-
stop flight. Depending on what the original query is, we talk about directed and undirected
traversals.

With directed traversal, just a small portion of a graph is accessed. It’s almost as if the query
knows where to go. For example, imagine a graph containing money transfers where the
vertices represent the transfers and the edges the bank accounts. Imagine the objective is to find
where a certain money amount went to. You must start with a specific vertex and follow the edge
that represents the relevant money transfer. By making this hop, another account is found.
Next, all the money transfers originating from this second account are studied and you follow

InfiniteGraph: Extending Business, Social and Government Intelligence with Graph Analytics 17

Copyright © 2010 R20/Consultancy, All Rights Reserved.

the edge that has the same money amount (which is probably only one hop). You must continue
this process, and you will create a path from the account where the money transfer originated to
the one where it stops. If this algorithm is programmed, the number of edges to use and the
number of members to access is very limited. Not that many resources are needed for a directed
traversal.

A more complex and more resource intensive query is an undirected traversal. With such a
traversal, many (maybe all) edges of a graph must be traversed and all the edges evaluated.
Imagine the following query: In a social network, in what ways is member M1 linked (indirectly
or directly) to M2? In principle, these two members could be linked via many different paths,
and some of those paths may be quite long. The only way to find an answer to this query is to
traverse a large portion of the graph. It starts with finding all the members to whom M1 is linked
directly. Let’s assume that each member is linked to on average 25 other members. In that case,
approximately 25 members will be found. If M2 is on that list, one path found is M1 M2. Next,
for all the other 25 members an extra hop must be executed. Note that this could return 252
(625) members. Again, if M2 is found, new paths are added to the result. For example, it might
be that the path M1 M15 M2 is added. This recursive process will continue. Everyone can do
the math: with hop number six over 244 million (256) members might be found. And with ten
hops we’re in the trillions of members. Because the graph is traversed by fanning out through
the graph, there will be an enormous amount of internal administration to keep track of.

And where does the algorithm stop? We can’t say stop after ten hops, because there might a
relationship over fifteen members. The algorithm should stop when after a certain hop no
members are found that haven’t already been evaluated.

To optimize this process, you must keep track of which members have already been evaluated.
The reason is that it doesn’t make sense to evaluate a member twice. Plus, it doesn’t make sense
to traverse away from the same member again. In other words, if M12 has already been
evaluated, it shouldn’t be evaluated again.

If a SQL database server supports recursive queries, undirected traversal of graphs will be
computationally expensive, and will require large amounts of memory and CPU processing.
Most developers will opt for moving the traversal process to the applications. On the other hand,
if a SQL database server doesn’t support recursive queries, the applications must do the graph
traversal themselves anyway. So in both cases it will be the task of the applications to do all the
graph traversal and to remember all the vertices and edges it has covered already.

Conclusion, SQL database servers have no problem with storing graph data, not even when the
graphs consist of millions of vertices, but using them for graph traversal is not an ideal solution.

9 Using NoSQL Database Servers for Storing and Retrieving Graphs

Besides the SQL database servers, there are numerous other database servers that don’t support
SQL or a limited version of SQL. Nowadays, these products together are called NoSQL database

InfiniteGraph: Extending Business, Social and Government Intelligence with Graph Analytics 18

Copyright © 2010 R20/Consultancy, All Rights Reserved.

servers. The question we would like to answer in this section is whether NoSQL products exist
that can easily support graph analytics, storage-wise and query-wise. But we begin by explaining
what NoSQL means and by describing the background of why these products were introduced.

The Origin of NoSQL Database Servers – As the name suggests, all NoSQL products have in
common that they don’t regard SQL as their primary database access language. Several don’t
support SQL at all, a few support a form of SQL, and the rest offer SQL as a second language.
In addition, there are NoSQL database servers that don’t present data as tables, columns, and
records. The name NoSQL might bring on that suggestion, but it’s not a homogeneous group of
products and there are no standards for NoSQL database servers.

They all have their own language, their own API, and their own storage structures; in a certain
respect they are proprietary products. Whereas SQL database servers are suitable for various
kinds of application areas, most NoSQL products are designed for just one or two application
areas, such as document management and analytical processing. The term NOSQL (Not Only
SQL) was first used in 1998 for a database server that had no support for SQL. Early 2009 the
term was re-introduced by Eric Evans for an event that was organized for database servers that
had no SQL support. And the term stuck. So, it’s now being used to refer to all the non-SQL-
based database servers.

Looking back at history, there have always been database servers not supporting SQL. In fact,
there were database servers on the market even before SQL existed. For example, one of IBM’s
first database servers called IMS (Information Management Services) did not support SQL, but a
language called DL/I and data was not stored in tables but hierarchies. IMS was released in 1968
(and it is still being supported), whereas the first research articles on SQL were not published
before the end of the 1970s. And we had to wait for the first products until the end of the 1970s.
The first standard of SQL was published mid 1980s. Other examples of database servers that
didn’t support SQL are IDMS, which was released in the 1960s by Cullinane Database Systems,
and Cincom Systems started to sell Total since 1968.

There are other examples of NoSQL database servers. For example, non-SQL-based database
servers for doing reporting and analytics have existed for quite some time, such as Express
(introduced in 1970), Essbase (introduced in 1992), and Microsoft Analysis Services (1997); the
first two are now owned by Oracle. These so-called multidimensional or OLAP database servers
did not support SQL either, but had their own languages. Microsoft’s product supported a
language called MDX and is now seen as a de-facto standard. For more information on these
products, we refer to this document written by Nigel Pendse.

Besides the pre-SQL and the multidimensional databases, there are other groups of NoSQL
database servers, such as XML and object-oriented database servers.

More recently, various new NoSQL database servers were introduced. There are products
specifically designed for storing and searching documents, sometimes called document stores or
document-oriented database servers. Examples are Apache’s CouchDB and Jackrabbit;
MongoDB; and RavenDB. Another popular group of NoSQL database servers is called the
key/value stores, such as Google’s BigTable, Amazon’s SimpleDB, and CDB. In most SQL

InfiniteGraph: Extending Business, Social and Government Intelligence with Graph Analytics 19

Copyright © 2010 R20/Consultancy, All Rights Reserved.

database servers data is stored in rows or in columns. In key/value stores the data is stored as
individual values.

Graph Database Servers – Finally, one of those groups of NoSQL database servers are the
graph database servers, with their specific storage formats and specific API’s, all aimed at doing
graph analytics fast on large amounts of data. More on these products at the end of this section.

To summarize, there have always been and there will always be database servers that are not
based on the SQL language and that do not organize data in tables and columns, because there
will always be requirements for which SQL database servers are not sufficient. But it was only
recently that they have been classified as NoSQL. The main reason was the introduction of a
number of those products by popular vendors, such as Apache, Amazon, and Google.

The Performance Gap – Besides the products introduced before SQL existed, the dominant
reason these NoSQL products have been developed and have received quite some attention is
that there are organizations for which SQL database servers didn’t offer the right performance,
functionality, or both. For example, if the amount of data to be queried is so massive, it could be
that even the fastest SQL product can’t guarantee the right performance. Other reasons could
be that the applications contain very special types of queries that are hard to formulate with
SQL, hard to optimize and have, therefore, a poor performance. It could also be that the type of
data to be stored doesn’t work well with SQL database servers.

To summarize, NoSQL database servers were introduced because the performance offered by
SQL database servers was not what organizations required for certain application areas. This
difference is shown in Figure 13. The blue-ish area indicates the performance offered by SQL
database servers. Through time, the offered performance increases, in other words, with every
new version or edition the products become more powerful. This might be due to new query
optimization techniques, new index types, improved storage formats, and even new hardware
technologies. The three red arrows indicate what different organizations need with respect to
performance. Due to an increase of users, queries, or data, their requirements for performance
will increase. Organizations with minimal performance needs will experience that, over time,
there will be an excess of performance. For organizations with average performance needs, the
vendors are probably improving their products with the same speed as the performance needs
of organization’s increase. For both groups of organizations, SQL database servers offer
sufficient performance. However, there is always a group of organizations for which the current
SQL database servers do not offer enough performance. The difference between what they need
and what’s offered, is called the performance gap. This gap could be due to the enormous
amount of data they must store and query, it could also be due to the query workload, or due to
the type of queries they have, they might be so complex, so hard to optimize, or not at all
suitable for SQL database servers. All this could lead to performance problems. Those are the
organizations that experience a performance gap and that investigate what NoSQL database
servers have to offer.

InfiniteGraph: Extending Business, Social and Government Intelligence with Graph Analytics 20

Copyright © 2010 R20/Consultancy, All Rights Reserved.

Figure 13 Performance
offered by database servers
versus performance required
by organizations

As indicated in Section 6, graph analytics is also a clear example of an application area that is
hard to manage for SQL database servers. Graph database servers, such as InfiniteGraph, are
designed specifically for this application area. Internally, everything in a graph database server is
designed for storing, searching, analyzing, and managing graphs. Its storage format fits
navigation required for graph analytics, it has an API specifically designed for this purpose, and
it can traverse a graph consisting of many vertices and edges very quickly.

To answer the question raised at the start of this section: not all groups of NoSQL database
servers are ideal for graph analytics, but the graph database servers certainly are. They can be
used in those areas where graph analytics is needed, but where other database servers can’t offer
the right performance level; the light-blue area in Figure 13. Graph database servers close the
performance gap for graph-type applications.

Figure 14 Positioning of graph analytics using
graph database server

InfiniteGraph: Extending Business, Social and Government Intelligence with Graph Analytics 21

Copyright © 2010 R20/Consultancy, All Rights Reserved.

To summarize, Figure 14 compares graph analytics supported by files, by SQL database servers,
and by graph database servers. When the complexity of graph analytics is high and when the
graphs are very large, graph database servers offer the right solution.

10 What is a Graph Database Server?

A graph database server is designed specifically to support graph analytics through fast and
efficient graph traversal. Its storage model is aimed at storing database objects, such as vertices,
edges, and their respective properties, in such a way that it makes graph traversal very efficient.
In addition it should offer a language or API with which applications can insert, modify, and
delete these database objects and with which the graphs can be traversed.

Inserting the Graph – Most developers are familiar with inserting, updating, deleting, and
querying data with a SQL database server. In this section we use a few simple examples to show
what comparable operations look like in a graph database server. The examples show how
vertices are introduced and how those vertices are linked with an edge. The context of these
examples is a social network environment. The language used here is the one supported by
InfiniteGraph.

First we create four vertices. On the first line, one member is created called Peter Johnson. On
the second line, this member is added to the database called myGraphDB. On the next six lines
three more members are created.

Member member1 = new Member("Peter Johnson");
myGraphDB.addVertex(member1);
Member member2 = new Member("Mary Metheny");
myGraphDB.addVertex(member2);
Member member3 = new Member("Mark Johnson");
myGraphDB.addVertex(member3);
Member member4 = new Member("Diane Cools");
myGraphDB.addVertex(member4);

Next, we create three types of edges. They represent three different types of relationships
(colleague, friend, and family) between vertices.

RelatedTo relation1 = new RelatedTo("colleague");
RelatedTo relation2 = new RelatedTo("friend");
RelatedTo relation3 = new RelatedTo("family");

Finally, we link the members using edges. On the first line member2 (Mary Metheny) is linked
to member1 (Peter Johnson), and the type of relationship is relation1 (colleague). On the second
line, Peter Johnson and Mark Johnson are linked as family, and on the last Mary Metheny and
Diane Cools are linked as friends.

member1.addEdge(relation1, member2, EdgeKind.BIDIRECTIONAL);
member1.addEdge(relation3, member3, EdgeKind.BIDIRECTIONAL);
member2.addEdge(relation2, member4, EdgeKind.BIDIRECTIONAL);

InfiniteGraph: Extending Business, Social and Government Intelligence with Graph Analytics 22

Copyright © 2010 R20/Consultancy, All Rights Reserved.

The specification EdgeKind.BIDIRECTIONAL indicates that the edge is bidirectional, or in other
words, an undirected graph is created.

Querying the Graph – The API of InfiniteGraph offers very extensive query capabilities. Classic
questions can be formulated, such as “Get the name and birth data of a member” and “What’s
the sum of all the sales in the Boston region”. And of course there are constructs to traverse
graphs. With a few examples we will show what queries look like.

Here is an example of how to retrieve one specific member from the database (one vertex):

myGraphDB.nameVertex("member1", member1);
Person retrievedmember1 = (Member)myGraphDB.getNamedVertex("member1");

The result is that member Peter Johnson is assigned to the object called retrievedmember1.

But more importantly, how can we traverse a graph? Here is an example of how to find all the
colleagues of a specific member:

private static void findAllColleaguesOfMember(Member m)
 {
 Navigator query = m.navigate(Guide.SIMPLE_BREADTH_FIRST, Qualifier.ANY,
 new Qualifier() {
 @Override
 public boolean qualify(Path currentPath)
 {
 Hop h = currentPath.getFinalHop();
 RelatedTo relatedTo = (RelatedTo)h.getEdge();
 if (currentPath.size() == 2 && relatedTo.getType().equals("colleague"))
 return true;
 return false;
 }
 },
 new NavigationResultHandler()
 {
 public void handleResultPath(Path result, Navigator navigator) {
 System.out.println("Found the following colleagues : ");
 for (Hop h : result)
 {
 if (h.hasEdge())
 {
 System.out.println(h.getVertex().toString());
 }
 }
 }
 });
 query.start();
 }

With the next example, we locate whether there is a direct or indirect relation between Peter
Johnson and Diane Cools:

InfiniteGraph: Extending Business, Social and Government Intelligence with Graph Analytics 23

Copyright © 2010 R20/Consultancy, All Rights Reserved.

private static class RelationTypeResultsHandler implements NavigationResultHandler {
 public enum RelationType {
 NONE, DIRECT, INDIRECT;
 }

 private RelationType rt = RelationType.NONE;
 private long targetMemberId;

 public RelationTypeResultsHandler(long memberId) {
 this.targetMemberId = memberId;
 }

 public RelationType getRelationType() {
 return rt;
 }

 @Override
 public void handleResultPath(Path result, Navigator navigator) {
 Hop h = result.getFinalHop();
 if ((h.getVertexHandle().getId() == targetMemberId)) {
 // Found the target member. Now check the relationship to the start member
 if (result.size() == 2) {
 // 2 hops = Vertex <- Edge -> Vertex or direct connection
 rt = RelationType.DIRECT;
 } else {
 rt = RelationType.INDIRECT;
 }
 navigator.stop();
 }
 }
 };
}

In Section 6 we showed what a recursive query looks like in SQL. The query was: “Get the
cheapest flights from Amsterdam to Phoenix leaving on March 1, 2007, with a maximum of
stops, and each stop should be less than 4 hours”. A comparable query in the InfiniteGraph API
would look like this:

Vertex departAirport = graphDB.getNamedVertex(departAirportCode);
Vertex arrivAirport = graphDB.getNamedVertex(arrivAirportCode);

PathResultsHandler resultsHandler = new PathResultsHandler();

Navigator query = departAirport.navigate(new CustomGuide(departDate),
 Qualifier.ANY,
 new ResultQualifier(arrivAirport.getId(), maxStops, maxStopTime),
 resultsHandler);

query.start();

This solution is much more simple and relatively straightforward. So an additional advantage of
this API is productivity and maintenance, because the code is shorter and simpler.

Besides these graph-specific features, a graph database server should support all the classical
features of any database server, such as data recovery, data concurrency, and data integrity, and
ACID-based transactions. These features should lead to high levels of concurrency.

InfiniteGraph: Extending Business, Social and Government Intelligence with Graph Analytics 24

Copyright © 2010 R20/Consultancy, All Rights Reserved.

11 InfiniteGraph

InfiniteGraph is a graph database server. In June 2010 the first public beta version was released.
A month later, the first 1.0 version was released. InfiniteGraph was developed by Objectivity Inc.
based in Sunnyvale, California. Currently, Windows and Linux are supported. For both
platforms, 32-bits and 64-bit versions exist. In the near future, support for the Mac is expected.
The database server is accessible from Java.

There were two dominant reasons for Objectivity to develop InfiniteGraph. The first reason was
that, over the years, Objectivity/DB had been successfully used by various customers for
supporting several large, distributed, custom-made, graph-based applications. The ability of
Objectivity/DB to handle complex many-to-many data issues made it a natural solution for these
customers. Then the market for graph analytics emerged with the need for a dedicated graph
database server. The second reason was the emergence of the NoSQL movement and cloud
computing. The emergence of NoSQL to support large, distributed cloud computing
environments began to gain significant traction in the database market. Objectivity saw an
opportunity to build a commercial graph API on top of a highly scalable and distributed
persistence layer that would support cloud-scale graph applications.

Objectivity/DB – Objectivity/DB is a distributed object-oriented database server with a long
history. In fact, Objectivity was one of the first vendors supplying an object-oriented database
server. The first version of this database server was released twenty years ago in 1990, two years
after founding the company. The current version is 10. Objectivity/DB has always been a highly
scalable object-oriented database server with a very robust transaction mechanism. The
distributed storage structure allows for storing and manipulating massive amounts of data.

Objectivity/DB supports different query languages, including EJBQL, LINQ, and SQL++.
Especially the latter is important for analytical applications. The database server is used by many
organizations for a wide range of applications, including military command and control systems;
manufacturing, automation, and process control systems; medical equipment; financial services;
and telecommunications systems. The product is also embedded in various software tools where
it operates in the background as a built-in database server.

It’s a native object-oriented database server, which means that data is not arranged as tables,
columns, and rows. Data is stored as objects (with properties) and as relationships between
objects. Maybe this data model is not so fast for scanning all the objects from a class, but for
picking one object, or, more importantly, for navigating from one object to another it’s very fast.
In a SQL database server navigating from one row in a table to a row in another table always
involves a join. Executing a join is a more complex process than what Objectivity/DB has to do:
follow the pointer from one object to another.

This object-oriented data model is ideal for InfiniteGraph. Mapping vertices and edges to
objects and relationships is straightforward, it’s almost a one-to-one transformation. This also
means that when applications ask InfiniteGraph to traverse a graph, technically it’s just a matter

InfiniteGraph: Extending Business, Social and Government Intelligence with Graph Analytics 25

Copyright © 2010 R20/Consultancy, All Rights Reserved.

of navigating from one object to another. And as indicated, this is something for which
Objectivity/DB has been specifically designed.

As indicated, Objectivity/DB is a distributed database server. It can distribute its data and
processing. The data can be distributed over 232 database containers. Each container may reside
physically on any host within the distributed system. So, it’s possible to distribute data among a
very large number of hosts. Objectivity/DB will always present all these containers as one logical
databases to the clients. The big advantage of being able to handle massive amounts of data is
that InfiniteGraph can manage and analyze graphs consisting of billions of vertices and edges.

Objectivity/DB also supports distributed processing. If task can be split between two or more
clients, then each of those will share the work of the database server in some respects. All the
distribution of data and processing is done through a peer-to-peer architecture.

InfiniteGraph – As said, InfiniteGraph is developed as a layer on top of Objectivity/DB; see
Figure 15. The top layer in this figure is purely an API for inserting, updating, and deleting
vertices and edges, and for traversing the graphs. The API is designed for graph analytics and
hides the complexities of Objectivity/DB, such as how to translate the vertices and edges to
objects and relationships. The InfiniteGraph API is more specific than the very generic
Objectivity/DB API, therefore, it’s a lot easier to learn and use. The examples in Section 10 show
how easy the API is, and how well it has been integrated into the programming language.

Objectivity/DB

InfiniteGraph

Navigator Placement
Engine

distributed database

Objectivity/DB

InfiniteGraph

Navigator Placement
EngineNavigator Placement
Engine

distributed databasedistributed database

Figure 15 The architecture of InfiniteGraph with underneath the distributed
object-oriented database server Objectivity/DB

The modules in the middle of Figure 15 do all the hard work. The module on the right, called
the placement engine, is responsible for storing the vertices and edges in the database. A
placement engine is somewhat comparable to the storage engine of a SQL database server.

InfiniteGraph: Extending Business, Social and Government Intelligence with Graph Analytics 26

Copyright © 2010 R20/Consultancy, All Rights Reserved.

Currently, two placement engines are supported: the single database placement engine and the
multi-database placement engine. The former is a more simple engine, and the latter is more
scalable and can handle bigger amounts of data. In the future, Objectivity might develop other
placement engines.

The left-hand module in the middle is the navigator. This is the module that handles the graph
traversals. It’s the module that keeps track of all the vertices and edges already accessed when
doing traversal. The smartness of this engine determines how fast a graph can be traversed. A lot
of research has already gone into this module and will without a doubt continue the coming
years.

Note: Technically, InfiniteGraph is not a database server, but an API (on top of Objectivity/DB).
Nevertheless, because the two products are sold as one product that presents itself as a database
server, we call it a database server in this whitepaper.

Partitioning Data in InfiniteGraph – InfiniteGraph has been developed to support analytics of
large-scale graphs. One of the dominant features that makes the product suitable for this is
support of multi-processor machines and the capability of partitioning data.

As indicated in Section 6, almost every SQL database server uses partitioning to speed up
queries that need to access most of the rows of a table. Most products will have different criteria
to determine which row will be assigned to which partition. A popular approach is to partition
the rows based on a property, such as location.

InfiniteGraph supports partitioning as well. However, for typical graph traversals, a SQL-like
form of partitioning might not be a very efficient solution. The reason can be found in the way
data is accessed by InfiniteGraph. Take for example the graph in Figure 12. Assume that an
application starts with member M1 and traverses via M2, M4, M6, to M9. Also assume that the
members have been partitioned based on the property location. The effect could be that every
member is stored in a different partition; see Figure 16. The result is that there will be a lot of
inter-process communication that will seriously slow down the traversal process.

Figure 16 Partitioning vertices based on their properties

For this reason, InfiniteGraph supports other partitioning schemes. One is called best effort
partitioning. Here objects are partitioned based on their inter-relationships. The more direct

InfiniteGraph: Extending Business, Social and Government Intelligence with Graph Analytics 27

Copyright © 2010 R20/Consultancy, All Rights Reserved.

and indirect relationships the vertices have, the bigger the chance they are stored in the same
partition. In a way, it’s like clustering data. For example, place all the members of one family in
a partition; see Figure 17. This style of partitioning minimizes the amount of cross-processor
traversal, and therefore improves the performance considerably.

Objectivity is in the process of developing other forms of partitioning, such as self-healing
partitioning. This means that if the relationships of a vertex change over time, it might be that
the vertex is dynamically moved to another partition.

Figure 17 Partitioning vertices based on their relationships

InfiniteGraph and SQL-based Reporting – Classic reporting and analytical tools are not able to
access the InfiniteGraph API. These tools have been developed to access database servers that
support SQL or MDX. If applications do need to access data stored in the database in a SQL-
style, they can use the SQL/ODBC interface supplied with Objectivity/DB called
Objectivity/DB+. Use of SQL might be necessary for writing more traditional reports such as
“Get the names and birth years of all the members and group them on country” or “What’s the
average age of all the members located in the USA and who are older than 50 years”. These are
not typical graph-type queries, but typical reporting queries.

The SQL interface supports standard SQL. That means that most of the queries executed by
reporting tools will work. SQL3 object extensions are also supported. Note that Objectivity/DB+
is not supplied with InfiniteGraph, but is a separate product.

A challenge though is that the developers writing the SQL queries have to understand how the
vertices and edges are mapped to objects in the Objectivity/DB database, and how those are
presented as tables and columns. This will require some studying, but because it’s documented,
it can be done.

InfiniteGraph: Extending Business, Social and Government Intelligence with Graph Analytics 28

Copyright © 2010 R20/Consultancy, All Rights Reserved.

Objectivity/DB

InfiniteGraph

Navigator Placement
Engine SQL++

distributed database

Objectivity/DB

InfiniteGraph

Navigator Placement
Engine SQL++Navigator Placement
Engine SQL++

distributed databasedistributed database

Figure 18 The SQL interface for reporting purposes

Transaction Support in InfiniteGraph – InfiniteGraph has been developed on top of
Objectivity/DB, and therefore it inherits all its transactional features. This makes InfiniteGraph a
highly safe, scalable, and robust product.

To summarize, InfiniteGraph is a scalable graph database server designed to traverse large-scale
graphs and therefore to be suitable for high-end graph analytics as demanded by organizations
today.

12 The Position of InfiniteGraph in Business Intelligence Architectures

There are many different ways to develop business intelligence systems. One organization might
base their solution on a data warehouse extended with an operational data store plus a number
of cubes; while another might decide to use a staging area and a number of data marts with
conformed dimensions; a third one could choose to develop an architecture based on the Data
Delivery Platform. But whatever they select, their solution is based on an architecture, a so-called
business intelligence architecture:

A business intelligence architecture is a set of design guidelines, descriptions, and
prescriptions for integrating various modules, such as data warehouses, data marts,
operational data stores, staging areas, ETL tools, analytical and reporting tools, into an
effective and efficient business intelligence system.

InfiniteGraph: Extending Business, Social and Government Intelligence with Graph Analytics 29

Copyright © 2010 R20/Consultancy, All Rights Reserved.

In most business intelligence architectures various databases are deployed, although it depends
on the architecture which ones are really implemented. There could be a database that acts as an
operational data store, another one as a staging area, again another as a central data warehouse,
and others as data marts. The question to be answered is: “Where can InfiniteGraph be used in
business intelligence architectures?”, or “As what type of data store could InfiniteGraph be
deployed?”

First of all, InfiniteGraph has not been designed to act as central data warehouse. As described
in this whitepaper, it’s a database server designed for graph analytics and therefore doesn’t have
the traditional SQL interfaces. Most of the operations executed on a central data warehouse are
not typical graph traversals, but more classic reporting queries. Nor would it make sense to use
InfiniteGraph as operational data store or staging area. Those databases will have to process a
constant stream of inserts and updates coming from the production environment.
Objectivity/DB can handle this, but InfiniteGraph would not add anything beneficial.

InfiniteGraph can be deployed as a data mart, one that is accessed by users who need to analyze
graph-structures interactively; see Figure 19. In many business intelligence architectures, data
marts are created for users with homogenous information needs and who have comparable
analytical wishes. Data marts are normally loaded with relevant data from the central data
warehouse. InfiniteGraph could be such a data mart where graph-structured data is stored and
where the users require graph analytics. Applications can be written that periodically read new
data from the central data warehouse and insert it into InfiniteGraph.

production
databases

staging
area

staging
area

datamarts

data
warehouse

Infinite
Graph

Figure 19 InfiniteGraph as data mart in a business
intelligence architecture

In this way, the role of InfiniteGraph is not much different from what is normally done with
multi-dimensional database servers that support MDX. These multi-dimensional databases are
also used for building data marts and for specific analytical needs and are refreshed with new
data periodically.

InfiniteGraph: Extending Business, Social and Government Intelligence with Graph Analytics 30

Copyright © 2010 R20/Consultancy, All Rights Reserved.

13 Technical Advantages of InfiniteGraph

This section lists the technical advantages of InfiniteGraph for graph analytics. The next section
describes its business advantages.

Robustness and Scalability – Because InfiniteGraph is built on top of the peer-to-peer
distributed architecture of Objectivity/DB, it inherits all its technical features. This means that
InfiniteGraph has a highly scalable architecture capable of distributing data and processing, and
has a robust foundation that can be relied upon by the InfiniteGraph developer.

Fast Processing of Massive Graphs – Because all the graph traversal is done on the server
and not on a client, InfiniteGraph is capable of traversing massive graphs fast, even if they
consist of millions of edges and vertices. Additionally, because InfiniteGraph keeps the traversed
graphs in memory, even interactive graph traversal can be done fast.

Increased Productivity – Especially compared to SQL database servers, the dedicated and
simple API for inserting and traversing graphs, makes it much easier to write applications for
graph analytics. This increases the productivity of developers, particularly those familiar with
Java.

Optimization of Graph Traversal – For queries that require undirected graph traversal,
InfiniteGraph has added optimization techniques to improve performance and minimize
resource usage.

Understanding of Graphs – InfiniteGraph understands graph-based structures. Therefore, it
has built-in features to make traversal easy. For example, in most cases when graphs are
traversed and the same vertex is accessed, InfiniteGraph will know that it should stop there. No
additional programming is required.

Smart Partitioning of Graphs – InfiniteGraph supports partitioning of data, but not based on
the properties of rows, but on the number of edges between vertices. This makes parallel
traversing of graphs more efficient and minimizes cross-processor traffic.

Full Control over Performance – Developers have full control over how graphs are accessed,
and therefore, they have full control over the performance. The code to traverse a graph is
completely integrated with the programming language.

Efficient Data Access – Because data is stored in an object-oriented structure, it’s stored in a
form aimed at graph traversal. The effect is that the required I/O is minimal, and only relevant
data elements belonging to the graphs are accessed. Therefore, traversing graphs is highly
efficient and fast.

Carefree Database Server – InfiniteGraph (together with Objectivity/DB) requires minimal
database administration effort. After the product has been installed and after data has been
loaded, there is minimal need for tuning and optimizing the database server.

InfiniteGraph: Extending Business, Social and Government Intelligence with Graph Analytics 31

Copyright © 2010 R20/Consultancy, All Rights Reserved.

Open API – The InfiniteGraph API is well-documented. This makes it possible for every tool
designed for analyzing graphs to act as a backend storage and query engine.

Comments on InfiniteGraph – InfiniteGraph offers some very valuable advantages for graph
analytics. But there are a few considerations:

• There are no standards for graph databases, which means that the InfiniteGraph API
can’t be based on a standard that would make the applications more portable.

• Currently, no SQL interface exists directly on InfiniteGraph itself. This means that

developers must learn how InfiniteGraph maps the graph objects to the Objectivity/DB
objects before they can write the correct queries.

• Popular ETL products can’t be used to load data into an InfiniteGraph database. A

special program must be written to copy, for example, data from a SQL-based central
data warehouse to an InfiniteGraph-based data mart.

• Currently, InfiniteGraph doesn’t come with a simple interactive tool with which

developers and users can easily manipulate data in the database. All manipulations must
be done through an API and a programming language.

14 Business Advantages of InfiniteGraph

InfiniteGraph offers a platform for graph analytics that offers the following business advantages:

Many Forms of Graph Analytics Supported – A wide range of graph analytics forms can be
used, including single path analysis, shortest path analysis, optimal path analysis, path existence
analysis, and vertex centrality analysis. This means that most business problems for which graph
analytics is the right solution can be solved.

Analysis of Large-Scale Graphs – With InfiniteGraph, organizations are able to analyze large-
scale graph-structures fast, even if they consist of millions of vertices and edges.

Quick Development of Applications for Graph Analytics – Due to the simple API, it’s a
platform on which organizations can develop new analytical applications quickly.

Interactive Graph Analytics – If InfiniteGraph is extended with one of the many graphical
tools on the market, the combination can make it a very interactive experience for the users,
even if the graphs are large.

Analysis of Operational Data – Because of its robust and proven transactional features, it can
be used in an operational analytical environment where large amounts of up-to-date data must
be analyzed.

InfiniteGraph: Extending Business, Social and Government Intelligence with Graph Analytics 32

Copyright © 2010 R20/Consultancy, All Rights Reserved.

15 Case Study – A Government Agency

Objectivity’s technology was first used to solve high-speed graph queries in a government
application. Years before graph analysis exploded on the market, the government needed to
search through large amounts of information that was highly interconnected to understand how
entities were related. To do this programmatically, it required that data be persisted from a
graph data model. Graph data was the only way to search for entities that might have dozens of
connection points that could discovered through potentially millions of links. Early on, it was
determined that relational databases were far too expensive in terms of the joins and self-joins
required to query entities that were separated by four or five degrees.

The specifications for this project required a system that could handle these queries in a system
that contained billions of objects that were distributed across multiple agencies. Additionally, the
application was going to be used by hundreds of concurrent users that would be analyzing this
data in a 24x7 environment. Given the critical nature of this application the government
performed an exhaustive evaluation of the technologies available and chose Objectivity as part of
the core infrastructure to support their system.

The project has been in operation for several years, performing analysis around the clock with
virtually no unplanned down time or interruption. While the system has grown larger than
expected, the government found their selection of Objectivity to be validated over years of
operational use through its scalability, performance, robustness, and flexibility.

As the commercial market has evolved to explore similar types of analysis, Objectivity leveraged
the core technology, experience and knowledge to commercial the capabilities used for graph
analysis. That effort has resulted in the product known as InfiniteGraph, which is a single
purpose database dedicated to help customer exploit the rich information contained in the
relationships of their massive datasets. InfiniteGraph also leverages the distributed, peer-to-peer
architecture the government used to support scalability that exceeded expectations, and this
scalability is what helps InfiniteGraph meet the ever increasing demands of cloud and web
generated data for analytics and information.

InfiniteGraph: Extending Business, Social and Government Intelligence with Graph Analytics 33

Copyright © 2010 R20/Consultancy, All Rights Reserved.

About the Author Rick F. van der Lans

Rick F. van der Lans is an independent analyst, consultant, author and lecturer specializing in
data warehousing, business intelligence, service oriented architectures, and database technology.
He works for R20/Consultancy, a consultancy company he founded in 1987.

Rick is chairman of the annual European Data Warehouse and Business Intelligence Conference
(organized in London), chairman of the BI event in The Netherlands, and he writes for the B-
eye-Network. He introduced the Data Delivery Platform in 2009 in a number of articles that
were published on BeyeNetwork.com.

He has written several books on SQL. His popular Introduction to SQL was the first English
book on the market in 1987 devoted entirely to SQL. After more than twenty years, this book is
still being sold, and has been translated in several languages, including Chinese, German, and
Italian.

For more information please visit www.r20.nl, or email to rick@r20.nl. You can also get in touch
with him via Twitter, LinkedIn, and Facebook.

About Objectivity, Inc.

Objectivity, Inc. is the leader in distributed, scalable data management technology. Our patented
distributed database engine and persistent object store and flagship product, Objectivity/DB, is
the enabling technology within many markets and sectors, powering some of the most complex
applications and mission critical systems used in government, business and science organizations
today.

Objectivity formed the InfiniteGraph business unit in 2010 to create a product to meet the new
demands of highly connected, and socially aware data. From social networking to government
intelligence, the holy grail of data analysis will be finding the hidden answers by leveraging the
relationships in data. InfiniteGraph’s distributed architecture is designed to handle the largest
and most complex graph requirements, while meeting the needs for performance and reliability.

We are committed to your success. Objectivity, Inc. has offices and representatives worldwide,
and works directly with organizations, integrators and technical teams to recommend solutions
and support options specifically tailored to clients’ project and technical requirements.

Objectivity, Inc. is headquartered in Sunnyvale, California, USA. Please contact us online or call
(408) 992-7100. Objectivity, Inc. provides direct assistance from our technical representatives
and team of systems engineers, in addition to free Web-based training, and the Objectivity
Developer Network, a resource for developers and evaluators that offers free open source
applications, tutorials, code snippets, and other technical materials.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

